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To come...

® Part I: the relationship between
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e Part Il: philosophical and linguistic aspects
of the process of constructing and
presenting mathematical proof

e Part l1I: hands-on analysis of mathematical
and non-mathematical arguments




Part I: the relationship
between argumentation and
mathematical proof




Deduction is the only necessary reasoning. It is the reasoning of mathematics.
It starts from a hypothesis, the truth or falsity of which has nothing

to do with the reasoning; and of course its conclusions are equally ideal. [. . . ]

Peirce, C. S. (1931-58). Collected Papers of Charles Sanders
Peirce. Harvard University Press, Cambridge, Mass. Eight
Volumes [58, 5.145].




118 The Layout of Arguments

Mathematical arguments alone seem entirely safe: given the assurance
that every sequence of six or more integers between 1 and 100 contains
at least one prime number, and also the information that none of the
numbers from 62 up to 66 is a prime, I can thankfully conclude that the
number 67 is a prime; and that is an argument whose validity neither
time nor the flux of change can call in question. This unique character

of mathematical arguments is significant. Pure mathematics is possibly
the only intellectual activity whose problems and solutions are ‘above
time’. A mathematical problem is not a quandary; its solution has no
time-limit; it involves no steps of substance. As a model argument for
formal logicians to analyse, it may be seducingly elegant, but it could
hardly be less representative.

S.Toulmin. The uses of argument. CUP, Cambridge, (1958).




Corollary 3.3. Let v and U be the equal-slices and non-degenerate equal-slices measures
on [k]", respectively. Then for any set A C [k]™ we have |v(A) — U(A)| < k?/n

Proof. 1t follows from Lemma that the probability that a slice is degenerate is at most
k?/n. Therefore, if A is a set that consists only of non-degenerate sequences, then its
non-degenerate equal-slices measure is (1 — ¢)™* times its equal-slices measure, for some
¢ < k?/n. Therefore, for such a set, 0 < 7(A) — v(A) = cv(A) < k*/n. If A consists only
of degenerate sequences, then 0 < v(A) — 7(A) = v(A) < k?/n. The result follows, since if
one takes a union of sets of the two different kinds, then the differences cancel out rather
than reinforcing each other. O

For later use, we slightly generalize Lemma

Lemma 3.4. Let z be chosen randomly from [k|™ using the equal-slices distribution. Then
the probability that fewer than m coordinates of x are equal to k is at most mk/n.

Proof. Let P be as in the proof of Lemma|3.2] This time we are interested in the probability

that px_1 > n + k —m. The number with p,_1 =n+k — s is ("+,’§:;_1), which is at most

("‘,L'f;z), which as we noted in the proof of Lemma is at most %(":f;l) The result

follows. O]

Corollary 3.5. Let x be chosen randomly from [k|™ using the equal-slices distribution.
Then the probability that there exists j € [k] such that fewer than m coordinates of x are
equal to j is at most mk?/n.

Proof. This follows immediately from Lemma O



Specifically, not all—indeed hardly any—mathematical proofs are strict formally
valid logical derivations. Of course, most of them can be restated in this manner, sometimes
with comparatively little effort, but this is not something that mathematicians routinely do. To

insist on such paraphrase is to misrepresent the nature of mathematical practice. Moreover,
there 1s much that mathematicians do besides proving results, central as that activity may be.
Most of this work may still be understood, however, as a species of argument.

Mathematics and Argumentation
Andrew Aberdein Found Sci (2009) 14:1-8







Corollary 3.3. Let v and ¥ be the equal-slices and nA(.)n—degenemte equal-slices measures
on [k]", respectively. Then for any set A C [k]™ we have |v(A) — D(A)| < k?/n

Proof. 1t follows from Lemma that the probability that a slice is degenerate is at most
k*/n. Therefore, if A is a set that consists only of non-degenerate sequences, then its
non-degenerate equal-slices measure is (1 — ¢)~! times its equal-slices measure, for some
¢ < k*/n. Therefore, for such a set, 0 < 7(A) — v(A4) = c(A) < k?/n. If A consists only
of degenerate sequences, then 0 < v(A) — 7(A) = v(A) < k?/n. The result follows, since if
one takes a union of sets of the two different kinds, then the differences cancel out rather
than reinforcing each other. O

For later use, we slightly generalize Lemma (3.2}

Lemma 3.4. Let z be chosen randomly from [k]™ using the equal-slices distribution. Then
the probability that fewer than m coordinates of x are equal to k is at most mk/n.

Proof. Let P be as in the proof of Lemma[3.2l This time we are interested in the probability
that px_1 > n + k —m. The number with p,_; =n+k—sis ("+::§_l), which is at most
(";f;z), which as we noted in the proof of Lemma [3.2] is at most %(“ZE;I) The result
follows.

Corollary 3.5. Let z be chosen randomly from [k]" using the equal-slices distribution.
Then the probability that there exists j € [k] such that fewer than m coordinates of x are

equal to j is at most mk?/n.
Proof. This follows immediately from Lemma

J




Frontstage mathematics

Corollary 3.3. Let v and U be the equal-slices and non-degenerate equal-slices measures
on [k]", respectively. Then for any set A C [k]"™ we have |v(A) — D(A)| < k?/n

Proof. 1t follows from Lemma that the probability that a slice is degenerate is at most
k?/n. Therefore, if A is a set that consists only of non-degenerate sequences, then its
non-degenerate equal-slices measure is (1 — ¢)~! times its equal-slices measure, for some
¢ < k*/n. Therefore, for such a set, 0 < #(A) — v(A) = c(A) < k*/n. If A consists only
of degenerate sequences, then 0 < v(A) — 7(A) = v(A) < k?/n. The result follows, since if
one takes a union of sets of the two different kinds, then the differences cancel out rather
than reinforcing each other. O

For later use, we slightly generalize Lemma

Lemma 3.4. Let x be chosen randomly from [k]™ using the equal-slices distribution. Then
the probability that fewer than m coordinates of x are equal to k is at most mk/n.

Proof. Let P be as in the proof of Lemma|3.2] This time we are interested in the probability
that px_1 > n+ k —m. The number with pp_1 =n+k — s is (n‘H,z:;_l), which is at most
(”232), which as we noted in the proof of Lemma is at most %("ﬁ;l) The result
follows. [
Corollary 3.5. Let © be chosen randomly from [k|™ using the equal-slices distribution.
Then the probability that there exists j € [k] such that fewer than m coordinates of x are

equal to j is at most mk?/n.

Proof. This follows immediately from Lemma O
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Connecting to existing
frameworks

® Peirce’s three types of reasoning
® Walton et al’'s argumentation schemes

® TJoulmin’s layout




Peirce’s three types of
reasoning

1. Deduction

Rule All the beans from this bag are white. Case
These beans are from this bag.
. Result These beans are white.




Peirce’s three types of
reasoning

2. Induction

Case These beans are [randomly selected] from
this bag. Result These beans are white.
. Rule All the beans from this bag are white.




Peirce’s three types of
reasoning

3. Hypothesis [Abduction]

Rule All the beans from this bag are white.
Result These beans [oddly] are white.
. Case These beans are from this bag.




The cornerstone of all
scientific discovery

The surprising fact C is observed;

But if A were true, C would be a matter of course;
Hence, there is reason to suspect that A is true. [Peirce,
58, 5.188-89]

Two tasks:

» generation of different hypotheses

» selection of best hypothesis (to start testing)

“Every single item of scientific theory which stands
established today has been due to Abduction.” [Peirce,
58, 8.172]




The central problem of abduction

Understanding the criteria for selection of the best hypothesis. It must:
1. explain the surprising fact

2. be subject to experimental testing

3. be economical (worth our time to investigate). We should consider:
(a) cost of verifying/falsifying the hypothesis (should be low);

(b) intrinsic value in the hypothesis (should be high)— value is (i)
its simplicity —following Ockham’s razor; and (ii) likelihood of it being
true (estimated by previous experience).

(c) the effect of the hypothesis on other projects




Deduction in maths...




Induction in maths...




Polya and Induction




Polya and Induction

pentagonal pi
“truncated ¢

.
L ‘v‘vr..'




Polya and Induction




Abduction in maths...

Proofs and
Refutations




Lakatos’s theory of

® Discussed the evolution of one particular
argument in research mathematics over
200 years.

® Showed how concepts, conclusion and
premises underwent change.

® Focused on the role that counterexamples
played.




Claim

For any polyhedron, the number of vertices
(V) minus the number of edges (E) plus the
number of faces (F) = 2.







Argument that V-E +F=2

Step 1: Let us imagine the polyhedron to be
hollow, with a surface made of thin rubber. If we |
cut one of the faces, we can stretch the !
remaining surfaces flat on the blackboard,
without tearing it. The faces and edges will be
deformed, the edges may become curved,and V
and E will not alter, so that if and only if V-E+F=
2 for the original polyhedron, V- E + F=1 for
this flat network - remember that we have
removed one face.

R ER———— ——



Argument that V-E +F=2

Step 2: Now we triangulate our map - it does
indeed look like a geographical map. We draw |
(possibly curvilinear) diagonals in those (possibly
curvilinear) polygons which are not already
(possibly curvilinear) triangles. By drawing each
diagonal we increase both E and F by one, so
that the total V' - E + Fwill not be altered.

AR re——— ——



Argument that V-E +F=2

Step 3: From the triangulated map we now remove
the triangles one by one. To remove a triangle we |
either remove an edge - upon which one face and
one edge disappear, or we remove two edges and a
vertex - upon which one face, two edges and and
one vertex disappear. Thus, if we had V- E+ F=1
before a triangle is removed, it remains so after the
triangle is removed. At the end of this procedure
we get a single triangle. For this V- E + F =1 holds

true.
DR —— - ——————r



C: For any polyhedron, V-E+F=2

PO: for any polyhedron, we can remove one face and P1: for any polyhedron, V-E+F=2 iff when we remove
then stretch it flat on the board, and V-E+F=1 one face and stretch it flat on the board, then V-E+F=1
// A ‘\
P2: if we remove triangles one by one from a P6: we can triangulate the map which
triangulated map, then V-E+F is unchanged results from removing a face from
A a polyhedron and stretching it flat
P3:if we remove triangles one by one PS: £ i L
from a triangulated map then we .\;)rgrg:iriang ®s

will be left with a single triangle P4: if we triangulate the map

that results from removing a face
from a polyhedron and stretching it flat
P7:from a triangulated map, on the board, then V-E+F is unchanged

if we remove any triangle,
then we either remove
one F and one E, or

one F,two E’s and one V

P8: by drawing any diagonal on a map
we increase both E and F by 1



Challenge

Is the claim true?




Responding to

|. Monster-barring/adjusting: (Re)define your terms in
a way which excludes the counterexample.

2. Exception-barring: Exclude an object or class of
objects from the conclusion.

3. Lemma incorporation: Find the (possibly missing)
faulty premise in the argument, and incorporate
this premise as a condition in the conclusion.




User-given: entities, concepts, measures of interestingness,
production rules, Lakatos methods

‘l

|. Form 2. Evaluate 3.Sendto T
theory theory

| l

5. Revise theory «— 4.Respond to requests

Student Student Student
\ I / T Conjectures,
Requests counterexamples,
Teacher concepts, proposals,

responses, requests




Evolving concepts
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The hollow cube




C: For any polyhedron,V -E+ F =2

/ N

PO Pl

—

P2 P3 P4 P5

|

P7 P8

—>

Pé6



{1-10,integer; div,mult]
There do not exist integers a, b such that.

bra=aanda+b=a




{1-10,integer; div,mult]
There do not exist integers a, b such that.
b+a=aanda+b=a

{0-10,integer, div,mult]
zero and any other integer




{1-10,integer; div,mult]
There do not exist integers a, b such that.
b+a=aanda+b=a

{0-10,integer, div,mult]
zero and any other integer

Zero is a problem entity.
I suggest we monster-bar it.




{1-10,integer; div,mult]
There do not exist integers a, b such that.
b+a=aanda+b=a

{0-10,integer, div,mult]
zero and any other integer

Zero is a problem entity.
I suggest we monster-bar it.

{Checks new object against current theory.
Finds it breaks 63% of its conjectures]

Okay - T'll accept that.




idermy and the platypus

Rogue tax
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There does not exist an_

animal which produces milk and

lays eggs.




There does not exist an.,
animal which produces milk and

lays eggs.
The platypus does.



There does not exist an.,
animal which produces milk and

lays eggs.

The platypus does.

{Checks new object against current theory.
Finds it breaks 11% of its conjectures}

The platypus is not an animal




There does not exist an.,
animal which produces milk and

lays eggs.
The platypus does.

{Checks new object against current theory.
Finds it breaks 11% of its conjectures}

The platypus is not an animal

{Finds that the platypus breaks 31% of its
own conjectures.}

Okay - I'll accept that.




Evolving conclusions




C: For any polyhedron, except those with cavities,V - E + F =2

/ N

PO Pl

—

P2 P3 P4 P5 P6

|

P7 P8

—>




|. Goldbach’s conjecture:

All even numbers are the sum of two primes

 ——

All even numbers are the sum of two
primes

2.All groups are Abelian
All groups are Abelian
3.All integers have an even number of divisors

All have an even number of divisors—

From TPTP library we invented 91 non-theorems.TM
produced valid modifications for 83\% of them, with an




Evolving premises




C: For any polyhedron,V -E + F =2

N

PO: for any polyhedron, we can remove one P

face and then stretch it flat on the board, A
andV -E+ F=| //

P2 P3 P4 P5 P6

| |

P7 P8




C: For any polyhedron,V -E + F =2

AN

PO: for any polyhedron, we can remove one P

face and then stretch it flat on the board, A
andV -E+ F=| //

P2 P3 P4 P5 P6

| |

P7 P8




C: For any polyhedron,V-E+ F =2

/ N

PO Pl

4

P2 P3 P4 P5 P6

—>

P7: From a triangulated map, if we remove I
any triangle, then we either remove one F pg
and one E, or one F 2 E’s and oneV



Cylinder:
V-E+F=0-2+3=1










C: For any polyhedron,V -E + F =2

AN

PO: for any polyhedron, we can remove one P

face and then stretch it flat on the board, A
andV -E+ F=| //

P2 P3 P4 P5 P6

| |

P7 P8




e Part Il: philosophical and linguistic
differences between the processes of

constructing and presenting mathematical
proof
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Online discussion sites for
mathematicians

The polymath blog

In collaboration with Prof Ursula Martin and
Associate Prof Andrew Aberdein




Online collaborative
mathematics

® successful mathematical practice is characteristically
collaborative

® increasing ubiquity and reliability of online networking tools
has facilitated the growth of remote collaboration

° ‘These examples [Linux, Wikipedia, and a chess match between
Kasparov and a “World Team™] are not curiosities, or special cases;
they are just the leading edge of the greatest change in the

creative process since the invention of writing’

Nielsen, M. Reinventing Discovery:The New Era of Networked Science, Princeton University Press,
USA, 201 1.




Implications for the study
of mathematical practice

® Online forums and blogs for informal mathematical discussion reveal
some of the ‘back’ of mathematics:

‘mathematics as it appears among working mathematicians, in informal
settings, told to one another in an office behind closed doors’

Hersh, R. (199 1). Mathematics has a front and a back. Synthese, 88:127—133.

® it has provided, for possibly the first time ever (though | may well be wrong
about this), the first fully documented account of how a serious research
problem was solved, complete with false starts, dead ends etc. interested’

Gowers,T. (2009). Polymath | and open collaborative mathematics. http://gowers.wordpress.com/
2009/03/101.




2. Connecting the dots: At the point where the pivot changes we create a line that passes through the previous pivot and a new pivot - like a side of a b X 2

polygon. v .
1
v 0X 0 O Rrate This .
Comment by Gal — July 19, 2011 @ 8:07 pm | Reply !
N
L
Nice. We need only to consider the times when to points are connected - this gives us a path, and after some time this path will come back to some éz (L 1
already visited point. So there is a cycle. If only we could find a cycle which spans 2ll the points, the question is solved... That may be some useful WA °
simplification. I
.
v 1 X 0 O Rate This 2
Comment by Garf — July 19, 2011 @ 8:23 pm | Reply ;
2
.
Isn't there always a cycle that spans all the points? The problem imposes restrictions on the cycles we can choose, right? pAS e
v 1 X0 O Rate This 2
Bl

Comment by Gal — July 19, 2011 @ 8:37 pm | Reply
.
L]
For example, the restriction on how the next pivot is chosen (geometrically: comment 9). Are there any other restrictions? Can we start - :
with a complete graph and all cycles on that graph and just discard the ones that don’t follow the restrictions to converge on the ones =

that do?

Pr
v 1 X 1 O Rate This .
Comment by Gal — July 19, 2011 @ 8:56 pm | Reply Q
-
H
.

The line must sweep out a full rotation (and only one full rotation) of 2n during the traversal of S. I feel like this is intimately h
related to proving that there is a starting angle for any point P in S such that all of S is then traversed. I'm trying to show this by qﬁ"'
induction. Base case (|S|=2) is obvious. Let |S| = n, take S’ = S U {Q}, and start with some windmill traversal of S.

Case A: Q is unreachable. Therefore we just traverse S, taking 2n to do so by induction.




3. If the points form a convex polygon, it is easy.

v 02X 1 O Rate This

Comment by Anonymous — July 19, 2011 @ 8:08 pm | Reply

Yes. Can we do it if there is a single point not on the convex hull of the points?
v 1 X 0 0O Rate This

Comment by Thomas H — July 19, 2011 @ 8:05 pm | Reply

Say there are four points: an equilateral triangle, and then one point in the center of the triangle. No three points are collinear.

It seems to me that the windmill can not use the center point more than once! As soon as it hits one of the corner points, it will cycle indefinitely through the
comers and never return to the center point.

I must be missing something here...

v 0™ 0 O Rate This

Comment by Jerzy — July 19, 2011 @ 8:17 pm | Reply

This isn’t true - it will alternate between the centre and each vertex of the triangle.
v 0X 0 O Rate This

Comment by Joe — July 19, 2011 @ 8:21 pm | Reply

No, you're not right. Let the corner points be A, B, C, clockwise, M the center. If you start in M, you first hit say A, then C, then M, then B, then A.
v 2X 1 O Rate This

Comment by Thomas H — July 19, 2011 @ 8:21 pm | Reply

Ohhh... I misunderstood the problem. I saw it as a half-line extending out from the last point, in which case you would get stuck on the convex hull. But
apparently it means a full line, so that the next point can be “"behind” the previous point. Got it.

v 1 X 0 O Rate This
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20 July, 2009 at 6:14 am
Cristina

1. Having seen the problem for the first
time few minutes ago, the first reaction I
have is to try some kind of variation on
reductio ad absurdum.

(I hope this kind of comment is in the spirit of the original idea — I apologise in
advance if I've stepped over the boundary of the experiment’s rules) [This is
definitely in the spirit of the experiment - T.]

51570 @ Rate This

20 July, 2009 at 6:49 am
David Speyer

2. Two vague thoughts:

(1) Let (', be the edge graph of the unit
n-cube: so (', has 9" vertices and ,, . 97! edges. There is an obvious map
from the vertices of (', to the integers, sending the vertex (7, 7,.....7,) to the
point > 7,0 ;. We would like to show that ;' (17 cannot disconnect (..

Is there some classification of sets that disconnect (',? Is there some measure
of size (probably not simple cardinality) in which {1/ ) is too small to
disconnect?

(2) I'd like to induct on 1. I tried to set it up a few times and failed, but maybe
someone else can do better.

s 3 570 @ Rate This

20 July, 2009 at 6:50 am
Haim

2 3. The following reformulation of the
problem may be useful:

Show that for any permutation s in Sn,
the sum a_s(1)+a_s(2)...+a_s(j) is not in M for any j=<n.

Now, we may use the fact that Sn is "quite large" and prove the existence of
such permutation with some kind of a pigeonhole-ish principle.

gi’,} 1 '[‘ 0 @ Rate This

20 July, 2009 at 6:51 am
Michael Lugo

2 4. If n = 2, the problem reduces to: let

a_1, a_2 be distinct positive integers, and

let m be a positive integer which is not s

= a_1 + a_2. A grasshopper is to jump along the real axis, starting at the point
0 and making two jumps a_1, a_2. Prove that the order can be chosen in such a
way that the grasshopper never lands on m.

\Online VisuaHsation of Argument
~

=) £o =) b
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The following reformulation of the
problem may be useful: Show that for
any permutation s In Sn, the sum
a_s(1)+a_s(2)...+a_s()) Is not in M for
any j=<n.

That's pretty strong; all you need is
that there exists a permutation where
that Is true.

co

Problem 6.

I'd like to Induct on n. | tried 1o set it
up a few times and falled, but maybe
someone else can do better.

This could be the base case for some

Induction on n.

3

It n = 2, the problem reduces to: let
a_1,a_2 be distinct positive integers,
and let m be a positive integer which is
nots =a_1 +a_2. Agrasshopper Is 1o
Jjump along the real axis, starting at the
point 0 and making two jumps a_1,
a_2. Prove that the order can be
chosen In such a way that the
grasshopper never lands on m.

I(j? In this case, the desired result is

ocbvious; the sequence of points
landed on s eitner (a_1,2 1 +a
(a2 ai1+a2.ltmisnotal '
a_2 we can pick either sequencd

s one of those we pick the othel




per 10,000 words

8
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2
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therefore hence it follows that thus



per 10,000 words
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Walton’s schemes




Analogy

® Generally, case C| is similar to case C2.

® Ais true (or false) in Cl.




Analogy

Critical questions
|. Are CI| and C2 similar, in the respect cited?

2. Is A true (false) in C1?

3. Are there differences between C| and C2 that
would tend to undermine the force of the
similarity cited!?

4. |s there some other case C3 that is also similar to
Cl, but in which A is false (true)!?




Analogy between two
and three dimensions

line — plane
length—  area
area —— volume

polygon = —— polyhedron




An inference which holds...

Area = B*H Volume = Area*H



...and one which doesn’t




Popularity

® |f a large majority (everyone, nearly
everyone, etc) accept A as true, then there
exists a (defeasible) presumption in favour
of A.

® A majority accept A as true

® Therefore, there exists a presumption in
favour of A




Popularity

Critical questions:
|. Does a large majority accept A as true!

2. Is there other relevant evidence which
would support the assumption that A is
not true!?

3. What reason is there for thinking that
this large majority is right?




There is no Algebraist nor Mathematician so expert in his science, as to place entire confidence in any
- truth immediately upon his discovery of it, or regard it as any thing, but a mere probability. Every time

he runs over his proofs, his confidence encreases; but still more by the approbation of his friends; and
is raisd to its utmost perfection by the universal assent and applauses of the learned world.

Hume Treatise on Human
Nature, 1739




Ongoing work...




People Research Question Methodology
Is there a logic of Historical/philosophical
Lakatos discovery and analysis, rational

justification?

reconstruction

Alan Smaill, Simon
Colton, John Lee,Alison
Pease

s it possible/useful to
write a computational
representation of
Lakatos!?

Implement and evaluate:
interpret/extend/test

Lakoff and Nunez

How do new concepts
arise in maths?

Linguistic analysis

Goguen

How do new concepts
arise in maths!?

Logical analysis




People

Research Question

Methodology

Alan Smaill, Markus
Guhe, Dan
Winterstien, Ewen
Maclean, Alison Pease,
Joe Corneli, ...

s it possible/useful to
write a computational
representation of
concept-blending/
metaphors!

Implement and evaluate:
interpret/extend/test

Ursula Martin, Andrew,
Aberdein,Alison Pease

What are people
talking about!?
How does explanation
work in maths!?

Qualitative: data-driven
(“based on GT” - dedoose,
74) and hypothesis-driven
(was Lakatos right?;
explanation: understanding
how/that; implicit why
questions, ...)




People-centred:

1.

Abilities (what can/can’t we do): [difficulty, hard, do] We can only almost do
P: We can do X; We must be able to do X; X is always possible; X is possible;
We can reduce prob to P; C might not be hardest bit; We can fix problem in this
way; we can do Y; The difficult bit might be H

knowledge (what do/don’t we know): [know, plausible, mistake, wrong| We
don’t know X; X is plausible; X is wrong; this is a mistake

understand (what do/don’t we understand): [understand, | Why is this a con-
tradiction?

Value/goals (what do/don’t we want): [want, goal, need, help, problem| X is a
good 1dea; We want to do X (is this proof?); X will achieve our goal Y; We need
to know X; It will help us in this way: This problem might happen; This problem
won’t happen; Our solution might not always work; This cannot happen; P might
happen; What if this problem occurs



Maths-centred:

1.

(O]

Initial problem: The initial problem is harder if P; The initial problem is hardest
when P; Condition C is necessary

Proof: (approaches) A is not a useful approach; Approaches A and B might be
same; Approach A might not work; If we can do X then we have a complete
proof; We can’t prove X? Proof |

Assertions: There is only one of type T; x is not in set S; M is subset of P;
Equation E has property P; If we do A then we’ll get B; There must always exist
X that satisfies condition C2;

Specific cases/instances: Things get harder in case C; There will always exist
instance X that satisfies condition C1; Problem works in instance X: Instance |
will be a problem; other cases Y and Z are trivial; case C might be a problem

Arguments: Let us suppose X. Then Y;

Representation: there are many ways to write A; by reducing the problem to P;

. Property: This thing has this property, Might not be unique; This thing has this

other property; We don’t have this property; might have this property; we have
this property; This property holds; M has this property; We don’t know if it has
property P: T must have this other unique property; x doesn’t have this property



Total: people category

@ ability ©® knowledge ¢ understanding @ value



Total: maths category

@ initial problem @ proof C assertion @ example
@® argument @® representation @ property



Pa | Pk | Pu | Pv | Mip |Mproof| Mass | Meg | Marg | Mrep |Mprop| Total:
Pa 8%
Pk 7%
Pu /7%
Pv 3%
Mip 8%
Mproof | 7%
Meg 14%
Marg | %
Mrep 9%
Mprop HT%
rorat: | 5% | 6% | 6% | 4% | 5% [10%|18%|15%| 7% | 7% |16%| 100
Ranges for all years| |04 o1+ s




Part 1ll: hands-on analysis
of mathematical and non-
mathematical arguments




